Сверхвысокочастотная хмелесушилка с поярусно расположенными резонаторами
Аннотация
Введение. Из анализа хмелесушилок различных систем и конструкций вытекает перспектива сушки хмеля комплексным воздействием энергии электромагнитного поля сверхвысокой частоты и конвективного тепла.
Цель статьи. Разработка конструкции малогабаритной СВЧ-конвективной хмелесушилки с обоснованными параметрами и интенсивной технологией сушки свежеубранного хмеля.
Материалы и методы. С учетом обоснованных критериев проектирования хмелесушилки и анализа существующих резонаторов предложена методика разработки хмелесушилки с энергоподводом в электромагнитном поле, включающая требования к конструкционному исполнению, к эксплуатационным и экономическим показателям и технологии.
Результаты исследования. Исследованы диэлектрические параметры хмеля и получены функциональные зависимости от влажности при частоте 2 450 МГц. Исследована динамика нагрева хмеля при изменении его фактора диэлектрических потерь в процессе воздействия электромагнитного поля сверхвысокой частоты. Разработана конструкционно-технологическая схема радиогерметичной СВЧ-конвективной хмелесушилки непрерывно-поточного действия с поярусно расположенными резонаторами для агропредприятий малой мощности. В экранирующем цилиндрическом корпусе поярусно расположены резонаторы: первый и третий резонаторы полусферические, а средний выполнен в виде эллипсоида для обеспечения высокой напряженности электрического поля.
Обсуждение и заключение. Ожидаемые удельные энергетические затраты хмелесушилки производительностью 12–13 кг/ч при мощности СВЧ генераторов 4,0 кВт для сушки свежеубранного хмеля влажностью 76–82 % до влажности 11–14%, составляют 0,30–0,33 кВт∙ч/кг. Необходимая напряженность электрического поля 2 кВ/см во всех трех резонаторах обеспечивается, следовательно, обеззараживание сырья происходит при температуре 65–70 оС за 5–6 мин пребывания в трех резонаторах.
Литература
2. Исследование технологического процесса сушки хмеля в сушилке ПХБ-750 / А. О. Васильев [и др.] // Вестник Чувашской ГСХА. 2019. № 1 (8). С. 96–102. URL: https://elibrary.ru/item.asp?id=39241139 (дата обращения: 02.10.2022).
3. Комплекс для первичной послеуборочной обработки хмеля : патент 2680709 Россиская Федерация / Иванщиков Ю. В. [и др.]. № 2017144962 ; заявл. 20.12.2017 ; опубл. 25.02.2019. URL: https://i.moscow/patents/ru2680709c1_20190225 (дата обращения: 02.10.2022).
4. Хмелесушилка непрерывно-поточного действия с источниками эндогенно-конвективного нагрева : патент 2774186 Российская Федерация / Просвирякова М. В. [и др.]. № 2021121317 ; заявл. 19.07.2021 ; опубл. 16.06.2022. URL: https://findpatent.ru/patent/277/2774186.html (дата обращения: 02.10.2022).
5. Хмелесушилка с источниками эндогенно-конвективного нагрева / М. В. Просвирякова [и др.] // Вестник Чувашской сельскохозяйственной академии. 2021. № 2. С. 91–99. URL: https://elibrary.ru/item.asp?id=46615198 (дата обращения: 02.10.2022).
6. Хмелесушилка с тороидальными и астроидальными резонаторами с энергоподводом в электромагнитном поле : патент 2772992 Российская Федерация / Просвирякова М. В. [и др.]. № 2021135280 ; заявл. 01.12.2021 ; опубл. 30.05.2022.
7. СВЧ-конвективная хмелесушилка непрерывно-поточного действия с полусферическим резонатором : патент 2770628 Российская Федерация / Просвирякова М. В. [и др.]. № 2021136688 ; заявл. 13.12.2021 ; опубл. 19.04.2022. URL: https://findpatent.ru/patent/277/2770628.html (дата обращения: 02.10.2022).
8. Многорезонаторная хмелесушилка с энергоподводом в электромагнитном поле : патент 2772987 Российская Федерация / Просвирякова М. В. [и др.]. № 2021132821 ; заявл. 11.11.2021 ; опубл. 30 05.2022.
9. Сивяков Б. К., Григорьян С. В. Математическое моделирование многоволновой СВЧ установки для сушки продуктов // Вопросы электротехнологии. 2019. № 4. С. 5–11.
10. Казарцев Д. А. Разработка общих видов математических моделей сушки пищевых продуктов с СВЧ энергоподводом на основе законов химической кинетики гетерогенных процессов // Вестник Воронежского государственного университета инженерных технологий. 2021. Т. 83, № 3. С. 17–22. URL: https://www.vestnik-vsuet.ru/vguit/article/view/2816 (дата обращения: 02.10.2022).
11. Анализ разработанных сверхвысокочастотных установок для термообработки сырья / Г. В. Новикова [и др.] // Вестник Казанского ГАУ. 2016. № 4. С. 89–93. URL: https://www.vestnik-vsuet.ru/vguit/article/view/2816 (дата обращения: 02.10.2022).
12. Дробахин О. О., Салтыков Д. Ю. Исследование возможности применения связанных биконических резонаторов для определения параметров диэлектрических материалов // Прикладная радиоэлектроника. 2014. Т. 13, № 1. С. 64–68.
13. Сверхвысокочастотная хмелесушилка с поярусно расположенными резонаторами (тюбинг) : патент 2774961 Российская Федерация / Просвирякова М. В. [и др.]. № 2021129382 ; заявл. 08.10.2021 ; опубл. 24.06.2022.
14. Буклагина Г. В. Интенсификация сушки зерна активным вентилированием с использованием электромагнитного поля СВЧ // Инженерно-техническое обеспечение АПК. Реферативный журнал. 2009. № 2.
15. Совершенствование комбинированного способа сушки листьев табака на основе применения СВЧ-излучений / Л. П. Пестова [и др.] // Сборник научных трудов Всероссийского научно-исследовательского института табака, махорки и табачных изделий. 2019. № 182. С. 317–323.