Determination of the Boundaries of Changes in External Parameters that Complicate the Calculation of the Suspension of Agricultural Machinery

  • Никита Алексеевич Пеньков Military Research and Training Center of the Air Force Military Air Academy named after Prof. N.E. Zhukovsky https://orcid.org/0000-0002-4644-3814
  • Сергей Юрьевич Жачкин Воронежский государственный технический университет https://orcid.org/0000-0002-1844-5011
  • Анатолий Иванович Завражнов Michurin State Agrarian University
Keywords: main components of the stress tensor, deformations, diagrams, external influence parameters, strength

Abstract

Introduction. The article deals with the problem of calculating the strength of the shaft of the wheel drive of agricultural machinery. The strength conditions of both the maximum torque and the values of relative deformations of the shaft are taken into account.
Aim of the Article. Of the research is to determine the limits of external influences on a structural element, caused by the distributed weight of the motor-tractor machinery, at which it is necessary to construct not only the torque and strain diagrams, but also to determine the extreme values at each section, where the strength index of the structure is nonlinear.
Materials and Methods. In calculations, the main provisions of continuum mechanics, theory of machines and mechanisms, as well as the basics of design in mechanical engineering are used. Central attention is paid to the influence of external influencing factors on the character of internal force distribution in the shaft.
Results. The obtained area of variation of parameters P-q allows us to determine the necessity of more detailed calculation of strength parameters of the considered part. This is due to the emergence of extreme areas outside the boundaries of individual areas of consideration of the shaft work. The results are presented as a two-dimensional graph of the ratio of external influences, at which the specified effect takes place.
Discussion and Conclusion. In comparison with typical calculations, regulated by normative documents, the proposed algorithm at the preliminary stage allows to determine the cases when nonlinear regions of bending moment changes require additional investigations. The use of the proposed algorithm allows, without resorting to time-consuming numerical methods of calculating the strength indicators of a wheel drive shaft, such as the finite element method, to obtain a more detailed picture of the nature of distribution of internal forces and deformations in the part under study.

Author Biographies

Никита Алексеевич Пеньков, Military Research and Training Center of the Air Force Military Air Academy named after Prof. N.E. Zhukovsky

Dr.Sci. (Engr.), Deputy Head of Research Department MERC AF “AFA”, Military Research and Training Center of the Air Force Military Air Academy named after Prof. N.E. Zhukovsky (54А Bolshevikov St., Voronezh 394064, Russian Federation), ORCID: https://orcid.org/0000-0002-4644-3814myth_np_nikit@mail.ru

Сергей Юрьевич Жачкин, Воронежский государственный технический университет

Dr.Sci. (Engr.), Professor, Professor of the Chair of Automated Equipment of
Machine-Building Production, Voronezh State Technical University (14 Moskovskiy Prospekt, Voronezh
394026, Russian Federation), ORCID: https://orcid.org/0000-0002-1844-5011, zhach@list.ru

Анатолий Иванович Завражнов, Michurin State Agrarian University

Dr.Sci. (Engr.), Professor, Academician of the Russian Academy of Sciences, Leading Researcher, Michurin State Agrarian University (101 International St., Michurinsk 394064, Russian Federation), snikishin24@bk.ru

References

1. The Impact of the Strengthening Phase Filler on the Properties of Composite Dispersion-Strengthened Galvanic Coatings / S. Yu. Zhachkin [et al.] // Engeneering Computations. 2018. Vol. 35, no. 8 (2). P. 3245–3251.

2. Управление внутренними напряжениями в гальванических композитных покрытиях на основе железа / С. Ю. Жачкин [и др.] // Труды ГОСНИТИ. 2017. Т. 129. С. 183–188.

3. Астахов М. В. Износостойкость композиционных хромовых покрытий, полученных методом гальваноконтактного осаждения // Известия вузов. Машиностроение : сб. науч. тр. М., 2004.

4. Жачкин С. Ю., Трифонов Г. И. Оценка физико-механических параметров покрытий плазменного напыления после восстановления детали трения авиационной промышленности // ВКС. Теория и практика. 2019. № 11. С. 77–84. URL: https://cyberleninka.ru/article/n/otsenka-fiziko-mehanicheskih-parametrov-pokrytiy-plazmennogo-napyleniya-posle-vosstanovleniya-detali-treniya-aviatsionnoy/viewer (дата обращения: 11.02.2023).

5. Zhachkin S. Yu., Penkov N. A., Krasnova M. A. The Technical Definition of Permanent Dispersion- Strengthened Composite Multilayer Galvanic Coatings // Australian Journal of Education and Science. 2018. Vol. XI, no. 1 (21). Pp. 238–253.

6. Zhachkin S. Yu., Penkov N. A., Krasnova M. A. Analytical Calculation of Elastic Modulus of Composite Electroplating Coatings // MATPR 10241. 2019. P. 2515–2517. https://doi.org/10.1016/j.matpr.2019.08.172

7. Буренин А. А., Ковтанюк Л. В., Полоник М. В. Формирование одномерного поля остаточных напряжений в окрестности цилиндрического дефекта сплошности упругопластической среды // Прикладная математика и механика. 2003. Т. 67, № 2. С. 316–325. EDN: OOMUOZ

8. Определение напряжений в гальваническом композитном покрытии с учетом теории дислокаций / С. Ю. Жачкин [и др.] // ВКС. Теория и практика. 2020. № 13. С. 221–228. URL: https://cyberleninka.ru/article/n/opredelenie-napryazheniy-v-galvanicheskom-kompozitnom-pokrytii-s-uchetomteorii-dislokatsiy/viewer (дата обращения: 11.02.2023).

9. Warier R. R., Sinha A., Sukumar S. Line-of-Sight Based Spacecraft Attitude and Position Tracking Control // European Journal of Control. 2016. Vol. 32. Pp. 43–53. https://doi.org/10.1016/j.ejcon.2016.04.001

10. Ивлев Д. Д. О теории трещин квазихрупкого разрушения // Прикладная механика и техническая физика. 1967. № 6. С. 88–120. URL: https://www.sibran.ru/journals/issue.php?ID=158788&ARTICLE_ID=158977 (дата обращения: 11.02.2023).

11. Aleksandrov A. Yu., Aleksandrova E. B., Tikhonov A. A. Monoaxial Attitude Stabilization of a Rigid Body Under Vanishing Restoring Torque // Nonlinear Dynamics and Systems Theory. 2018. Vol. 18, no. 1. P. 12–21. https://doi.org/10.1007/s11071-018-4191-4

12. Zhachkin S. Yu., Penkov N. A., Krasnova M. N. Dispersion-Hardened Composite Coatings with Desired Physical and Mechanical Properties // Engineering Computations. 2017. Vol. 34, no. 8 (2). P. 2577–2586.

13. Zhachkin S. Yu., Penkov N. A., Krasnova M. N. To the Question of the Influence on Pressure of the Tool on the Processed Surface when Applying the Dispensable-Strengthened Composite Galvanic Coatings // MATPR 10241. 2019. P. 2512–2514.

14. Molodenkov A. V., Sapunkov Ya. G. Analitical Quasi-optimal Solution for the Problem on Turn Maneuver of an Arbitrary Solid with Arbitrary Boundary Conditions // Mechanics of Solids. 2019. Vol. 3. P. 474–485. https://doi.org/10.3103/S0025654419020110

15. Levskii M. V. Optimal Control of Kinetic Moment During the Spatial Rotation of a Rigit Body // Mechanics of Solids. 2019. Vol. 1. P. 92–111.

16. About Determing the Microhardness of Composite Coatings / S.Yu. Zhachkin [et al.] // Materials Science Forum. 2021. Vol. 1037. P. 486–493.

17. Jahromi B. H., Varizi A. Elasto-plastic Stresses in a Functionally Graded Rotating Disk // Journal of Engineering Materials and Technology. 2012. Vol. 134, no. 2. 021002. https://doi.org/10.1115/1.4006023

18. Chernoivanov V. I. Organization and Technology of Restoration Machine Parts. Moscow : GOSNITI, 2003.

19. Akulenko L. D. Sirotin A. N. Trigonometric Extremals in the Optimal Control Problem of the Reorientation of the axis of a Dynamically Symmetric Rotating Body // JAMM. 2011. Vol. 77, issue 3. P. 305–313.

20. Beaman J. J. Solid Freeform Fabrication: An Historical Perspective // The University of Texas. Austin, Texas. 2009. URL: https://repositories.lib.utexas.edu/bitstream/handle/2152/76265/2001-66-Beaman.pdf?sequence=2&isAllowed=y ( дата обращения: 11.02.2023).

21. Nejad M. Z., Rastgoo A., Hadi A. Exact Elasto-Plastic Analyses of Rotating Disks Made of Functionally Graded Materials // International journal of engineering science. 2014. Vol. 85. P. 47–57. https://doi.org/10.1016/j.ijengsci.2014.07.009
Published
2023-06-30