Analysis of Manure Separation Technology Efficiency into Fractions Followed by Liquid Fraction Rectification

  • Екатерина Викторовна Шалавина Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM https://orcid.org/0000-0002-7345-1510
  • Эдуард Вадимович Васильев Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM https://orcid.org/0000-0002-5910-5793
  • Эдуард Александрович Папушин Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM https://orcid.org/0000-0001-7035-4654
Keywords: pig complex, technology, manure, flocculation, rectification, total nitrogen, organic fertilizers

Abstract

Introduction. There is not enough data on the used intensive technologies of processing pig manure into organic fertilizer to accurately calculate the content of nutrients in the final products and, accordingly, their doses of application.
Aim of the Article. To determine the efficiency of pig manure processing technology, which includes liquid fraction rectification, by the quantitative and qualitative characteristics of manure and final products, and to trace the redistributing total nitrogen between the final products on the example of a pilot pig breeding complex production.
Materials and Methods. For the study, there was chosen a typical pig-breeding complex, where the pig manure processing included slurry acidification, flocculation, separation into fractions in a decanter centrifuge, rectification of liquid fraction, passive composting of solid fraction, and long-term storing of liquid fraction. The technology allows producing three types of end products: solid organic fertilizer, concentrated liquid (ammonia water), and fertilizer solution. Quantity and quality of pig manure and the end products were calculated by the known methods. Experimental studies were performed to compare the results. Samples were analyzed in the analytical laboratory of Institute for Engineering and Environmental Problems in Agricultural Production in 2022. Three replications were carried out for each sample. The experimental data were statistically analysed in MS Excel.
Results. Quantitative and qualitative characteristics of pig manure, its solid and liquid fractions, and end products were calculated. The difference between the calculated and actual values does not exceed 10.2% that indicates the reliability of calculations.
Discussion and Conclusion. The introduction of a new technology at the pig-breeding complex has reduced atmospheric emissions by 10% due to the nitrogen conservation, has reduced operating costs for transporting organic fertilizer by 47% due to the concentration of nutrients in a smaller volume and has improved soil fertility through fertilizer irrigation.

Author Biographies

Екатерина Викторовна Шалавина, Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM

Cand.Sci. (Engr.), Senior Researcher of the Department of Analysis and Forecasting of Environmental Sustainability of Agroecosystems, Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russian Federation), ORCID: https://orcid.org/0000-0002-7345-1510shalavinaev@mail.ru

Эдуард Вадимович Васильев, Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM

Cand.Sci. (Engr.), Leading Researcher of the Department of Analysis and Forecasting of Environmental Sustainability of Agroecosystems, Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russian Federation), ORCID: https://orcid.org/0000-0002-5910-5793sznii6@yandex.ru

Эдуард Александрович Папушин, Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM

Cand.Sci. (Engr.), Leading Researcher of the Department of Analysis and Forecasting of Environmental Sustainability of Agroecosystems, Institute for Engineering and Environmental Problems in Agricultural Production (IEEP) branch of Federal Scientific Agroengineering Center VIM (3 Filtrovskoye Shosse, Tyarlevo, Saint Petersburg 196625, Russian Federation), ORCID: https://orcid.org/0000-0001-7035-4654sznii6@yandex.ru

References

1. Трифанов А. В., Калюга В. В., Базыкин В. И. Состояние и тенденции развития производства свинины в Российской Федерации // Технологии и технические средства механизированного производства продукции растениеводства и животноводства. 2016. № 90. С. 5–14. EDN: XELLCX

2. Васильев Э. В., Шалавина Е. В. Изменение содержания азота и фосфора в жидкой фракции свиного навоза при биологической очистке // Технологии и технические средства механизированного производства продукции растениеводства и животноводства. 2014. № 85. С. 146–150. EDN: SYDQQR

3. Welfare Health and Productivity in Commercial Pig Herds / P. Racewicz [et al.] // Animals. 2021. Vol. 11, issue 4. Article no. 1176. https://doi.org/10.3390/ani11041176

4. Kariyama I. D., Zhai X., Wu B. Physical and Rheological Properties of Animal Manure: A Review // Transactions of the ASABE. 2018. Vol. 61, no. 3. P. 1113–1120. https://doi.org/10.13031/trans.12768

5. Pilot-Scale Demonstration of Membrane-Based Nitrogen Recovery from Swine Manure / B. Molinuevo- Salces [ et al.] // Membranes. 2020. Vol. 10, no. 10. Article 270. https://doi.org/10.3390/membranes10100270

6. Environmental Impacts of Combining Pig Slurry Acidification and Separation under Different Regulatory Regimes – A Life Cycle Assessment / M. ten Hoeve [et al.] // Journal of Environmental Management. 2016. Vol. 181. P. 710–720. https://doi.org/10.1016/j.jenvman.2016.08.028

7. Precision Fermentation to Advance Fungal Food Fermentations / K. F. Chai [et al.] // Current Opinion in Food Science. 2022. Vol. 47. Article no. 100881. https://doi.org/10.1016/j.cofs.2022.100881

8. Fomicheva N. V. The Effect of the Ratio of Peat and Manure on the Efficiency of the Fermentation Process // IOP Conference Series: Earth and Environmental Science. 2022. Vol. 1076. Article no. 012042. https://doi.org/10.1088/1755-1315/1076/1/012042

9. Mixed Acid Fermentation of Carbohydrate-Rich Dairy Manure Hydrolysate / A. T. Ingle [et al.] // Frontiers in Bioengineering and Biotechnology. 2021. Vol. 9. https://doi.org/10.3389/fbioe.2021.724304

10. Composting of Mixture of Total Mixed Ration and Cow Manure: Quality of the Finished Compost / X. Bai [et al.] // Advanced Composites and Hybrid Materials. 2022. Vol. 5. P. 294–306. https://doi.org/10.1007/s42114-021-00365-3

11. Tóth F. A., Tamás J., Nagy P. T. Early Evaluation of Use of Fermented Chicken Manure Products in Practice of Apple Nutrient Management // Acta Agraria Debreceniensis. 2022. Vol. 1. P. 195–198. https://doi.org/10.34101/actaagrar/1/8502

12. Gross A., Glaser B. Meta-Analysis on How Manure Application Changes Soil Organic Carbon Storage // Scientific Reports. 2021. Vol. 11. Article no. 5516. https://doi.org/10.1038/s41598-021-82739-7

13. Cow Manure Application Effectively Regulates the Soil Bacterial Community in Tea Plantation / S. Zhang [et al.] // BMC Microbiology. 2020. Vol. 20. Article no. 190. https://doi.org/10.1186/s12866-020-01871-y

14. Effects of Short-Term Manure Nitrogen Input on Soil Microbial Community Structure and Diversity in a Double-Cropping Paddy Field of Southern China / H. Tang [et al.] // Scientific Reports. 2020. Vol. 10. Article no. 13540. https://doi.org/10.1038/s41598-020-70612-y

15. Antonious G. F., Turley E. T., Dawood M. H. Monitoring Soil Enzymes Activity Before and After Animal Manure Application // Agriculture. 2020. Vol. 10, no. 5. Article no. 166. https://doi.org/10.3390/agriculture10050166

16. Effects of Lime Amendment on the Organic Substances Changes, Antibiotics Removal, and Heavy Metals Speciation Transformation during Swine Manure Composting / Z. Chen [et al.] // Chemosphere. 2021. Vol. 262. Article no. 128342. https://doi.org/10.1016/j.chemosphere.2020.128342

17. Manure Treatment According to the Trevi-Concept / E. Smet [et al.] // Communications in Agricultural and Applied Biological Sciences. 2003. Vol. 68, issue 2, part A. P. 125–131. URL: https://www.researchgate.net/publication/8415127_Manure_treatment_according_to_the_Trevi-concept (дата обращения: 28.02.2023).

18. Phosphorus Recovery from Co-Digested Pig Slurry: Development of the RePeat Process / I. Regelink [et al.]. Wageningen : Wageningen Environmental Research. Report 2949, 2019. 66 p. https://doi.org/10.18174/476731

19. Hjorth M., Christensen M. L., Christensen P. V. Flocculation, Coagulation, and Precipitation of Manure Affecting Three Separation Techniques // Bioresource Technology. 2008. Vol. 99, no. 18. P. 8598–8604. https://doi.org/10.1016/j.biortech.2008.04.009

20. Fomicheva N. V., Rabinovich G. Yu. Technological Line for Processing Animal Waste // IOP Conference Series: Earth and Environmental Science. 2021. Vol. 677. Article no. 052004. https://doi.org/10.1088/1755-1315/677/5/052004

21. Nitrogen Recovery from Different Livestock Slurries with an Innovative Stripping Process / A. Heidarzadeh Vazifehkhoran [et al.] // Sustainability. 2022. Vol. 14. Article no. 7709. https://doi.org/10.3390/su14137709

22. Trends on Manure Processing in Europe / X. Flotats [et al.] // Book of Proceedings, 2nd International Conference of WASTES: Solutions, Treatments and Opportunities. Braga (Portugal), 11–13 September. Edition: CVR, Centro para a Valorizaçao de Residuos, 2013. P. 587–592.

23. Manure Processing as a Pathway to Enhanced Nutrient Recycling: Report of SuMaNu Platform / S. Luostarinen [et al.] // Natural Resources and bioeconomy studies 62/2020. Helsinki : Natural Resources Institute Finland. 2020. 76 p. URL: https://helcom.fi/wp-content/uploads/2021/08/Manure-processing-asa-pathway-to-enhanced-nutrient-recycling.pdf

24. Aguirre-Villegas H. A., Larson R., Reinemann D. J. From Waste-to-Worth: Energy, Emissions, and Nutrient Implications of Manure Processing Pathways // Biofuels, Bioproducts and Biorefining. 2014. Vol. 8, issue 6. P. 770–793. https://doi.org/10.1002/bbb.1496

25. Manure Treatment and Recycling Technologies / R. Dong [et al.] // Circular Economy and Sustainability / A. Stefanakis, I. Nikolaou (eds.). Vol. 2. Environmental Engineering. Elsevier, 2022. P. 161–180. https://doi.org/10.1016/B978-0-12-821664-4.00009-1

26. Knaul T. F., Schumacher Teixeira P. Impact of Embiofert Treatment in Swine Manure Treatment Ponds // Journal of Engineering Research. 2022. Vol. 2, no. 9. P. 1–10. https://doi.org/10.22533/at.ed.317292207061

27. Melse R. W., De Buisonjé F. E. Manure Treatment and Utilisation Options. Wageningen: Wageningen Livestock Research, 2020. 7 p. URL: https://edepot.wur.nl/541798 (дата обращения: 28.02.2023).

28. Loyon L. Overview of Manure Treatment in France // Waste Management. 2017. Vol. 61. P. 516–520. https://doi.org/10.1016/j.wasman.2016.11.040

29. Microbiological Features and Bioactivity of a Fermented Manure Product (Preparation 500) Used in Biodynamic Agriculture / M. Giannattasio [et al.] // Journal of Microbiology and Biotechnology. 2013. Vol. 23, no. 5. P. 644–651. https://doi.org/10.4014/jmb.1212.12004

30. Management of Poultry Manure in Poland – Current State and Future Perspectives / D. Dróżdż [et al.] // Journal of Environmental Management. 2020. Vol. 264. Article no. 110327. https://doi.org/10.1016/j.jenvman.2020.110327

31. Rayne N., Aula L. Livestock Manure and the Impacts on Soil Health: A Review // Soil Systems. 2020. Vol. 4, issue 4. Article no. 64. https://doi.org/10.3390/soilsystems4040064

32. Manure Management and Soil Biodiversity: Towards More Sustainable Food Systems in the EU / J. D. Köninger [et al.] // Agricultural Systems. 2021. Vol. 194. Article no. 103251. https://doi.org/10.1016/j.agsy.2021.103251

33. Шалавина Е. В., Уваров Е. В., Васильев Е. В. Методика расчета распределения общего азота и общего фосфора между фракциями свиного навоза // Инженерные технологии и системы. 2022. Т. 32, № 1. С. 54–70. https://doi.org/10.15507/2658-4123.032.202201.054-070

34. Розен А. М. Производство тяжелой воды методом ректификации аммиака с тепловым насосом. Опыт пуска промышленной установки // Атомная энергия. 1995. Т. 5. С. 221–229. URL: http://elib.biblioatom.ru/text/atomnaya-energiya_t79-3_1995/go,68/ (дата обращения: 28.02.2023).

35. Максишко Л. М. Экобезопасная технология переработки навозных отходов животноводства с абсорбцией парниковых газов // Теоретическая и прикладная экология. 2022. № 1. С. 205–209. https://doi.org/10.25750/1995-4301-2022-1-205-209
Published
2023-06-30
Section
Technologies, machinery and equipment