Состав для противокоррозионной обработки деталей резьбовых соединений
Аннотация
Введение. Обзор исследований по защите резьбовых соединений от коррозии показывает, что в них имеет место негерметичность, способствующая развитию щелевой коррозии, которая приводит к снижению механической прочности деталей резьбовых соединений и усложняет демонтаж. Современные смазочные составы и химические фиксаторы резьбы не обеспечивают защиту от коррозии и демонтаж резьбовых соединений в течение длительного срока эксплуатации, поэтому разработка более эффективного смазочного состава является актуальной задачей.
Цель статьи. Разработка эффективного смазочного состава для защиты от коррозии и улучшения разборности резьбовых соединений.
Материалы и методы. Детали резьбовой пары М10 с шагом резьбы 1,5 мм из стали Ст3, соединяющие два изделия (опытные образцы), смазывали солидолом Ж-СКа 2/6-2, литолом-24, составом солидол + олигомер Д-10ТМ 5% по массе, составом литол-24 + олигомер Д-10ТМ 5% по массе, затягивали на момент усилия затяжки 80 Н‧м, погружали в 3%-й раствор хлорида натрия при температуре 22–24 °С. Через 8 ч образцы извлекали из раствора и оставляли в воздухе на 16 ч, что представлял один цикл. По вариантам смазки количество параллельных опытов было 5. Продолжительности экспонирования – 24, 48, 96, 240, 480, 720 ч, после истечения которых по 5 образцов каждого варианта смазки разбирали, фиксировали значение момента силы раскрепления, оценивали коррозионное поражение и рассчитывали коэффициент трения.
Результаты исследования. Разработан эффективный состав смазки для обработки деталей резьбовых соединений, повышающий их коррозионную стойкость и улучшающий демонтаж
Обсуждение и заключение. При добавлении олигомера Д-10ТМ 5% по массе в литол-24 наблюдается существенное повышение продолжительности времени до появления очагов коррозии на деталях резьбовых соединений и улучшение их демонтажа. Внедрение полученных результатов позволяет увеличить надежность резьбовых соединений.
Литература
2. Повышение усталостной прочности метрической резьбы упрочняющим электромеханическим восстановлением / В. Б. Салов [и др.] // Вестник Ульяновской государственной сельскохозяйственной академии. 2012. № 2 (18). С. 106–111. URL: https://www.vestnik.ulsau.ru/upload/iblock/a24/vestnik-2012-2(18).pdf (дата обращения: 22.03.2023).
3. Повышение эксплуатационных свойств резьбовых соединений электромеханической обработкой / Л. В. Федорова [и др.] // Вестник Московского государственного агроинженерного университета имени В. П. Горячкина. 2010. № 2 (41). С. 109–112. EDN: NGFBIV
4. Федорова Л. В., Федоров С. К., Салов В. Б. Формирование эксплуатационных пока- зателей резьбы электромеханической обработки // Труды ГОСНИТИ. 2009. Т. 103. С. 35–37. EDN: KYCAKD
5. Новые ингибиторы коррозии для защиты сельскохозяйственной техники / И. В. Фадеев [и др.] // Известия Нижневолжского агроуниверситетского комплекса. 2020. № 3 (59). С. 365–376. https://doi.org/10.32786/2071-9485-2020-03-39
6. Кузнецов Ю. И., Казанский Л. П. Физико-химические аспекты защиты металлов ингибиторами коррозии класса азолов // Успехи химии. 2008. 2008. Т. 77, № 3. С. 227–241. https://doi.org/10.1070/RC2008v077n03ABEH003753
7. Ингибитор коррозии металлов для использования при ремонте автотракторной техники / Н. В. Бышов [и др. ] // Известия Нижневолжского агроуниверситетского комплекса. 2019. № 2. С. 265–275. https://doi.org/10.32786/2071-9485-2019-02-32
8. Корнилович С. А., Соловьев В. А. Пути обеспечение плотности стыка резьбовых соединений при производстве, техническом обслуживании и ремонте машин сельскохозяйственного назначения // Омский научный вестник. 2013. № 1 (117). С. 68–71. URL: http://vestnik.omgtu.ru/images/stories/arhiv/2013n/1_117_2013/59136_mashinostroenie.pdf (дата обращения: 22.03.2023).
9. Соловьев В. Л. Повышение точности контроля усилия затяжки при сборке групповых резьбовых соединений // Вестник СибАДИ. 2013. № 3 (31). С. 67–70. URL: https://cyberleninka.ru/article/n/povyshenie-tochnosti-kontrolya-usiliya-zatyazhki-pri-sborke-gruppovyh-rezbovyh-soedineniy/viewer (дата обращения: 22.03.2023).
10. Федоров С. К., Федорова JI. B. Восстановление резьбы электромеханической обработкой // Вестник Ульяновского государственного технического университета. 2003. № 1–2 (21–22). С. 36–39. URL: https://cyberleninka.ru/article/n/vosstanovlenie-rezby-elektromehanicheskoy-obrabotkoy/viewer (дата обращения: 22.03.2023).
11. By Динь Вуй. Атмосферная коррозия металлов в тропиках. М. : Наука, 1994. 240 с. URL: https://markmet.ru/kniga-po-metallurgii/atmosfernaya-korroziya-metallov-v-tropikakh (дата обращения: 22.03.2023).
12. Фадеев И. В., Ременцов А. Н. Установление периодичности противокоррозионной обработки кузовов легковых автомобилей // Вестник МАДИ. 2010. Вып. 2 (21). С. 15–17. EDN: MWAQSB
13. Федоров С. К., Федорова JI. B. Отделочно-упрочняющая электромеханическая обработка резьбовых поверхностей // Вестник Ульяновского государственного технического университета. 2002. № 1 (7). С. 104–108. EDN: TJTHHX
14. Фадеев И. В., Садетдинов Ш. В. Повышение коррозионной стойкости стали 10 // Вестник МАДИ. 2015. Вып. 2 (41). С. 107–114. EDN: TUVQMB
15. Повышение эффективности противокоррозионной защиты стыковых и сварных соединений сельскохозяйственных машин консервационными материалами / А. В. Шемякин [и др.] // Известия Юго-Западного государственного университета. 2016. № 2 (65). С. 87–91. URL: https://science.swsu.ru/assets/js/viewer/web/viewer.html?file=https://science.swsu.ru/jour/article/viewFile/42/42#page=1&zoom=auto,-16,34 (дата обращения: 22.03.2023).
16. Кузин Е. Г. Щелевая коррозия в соединениях сельскохозяйственных машин // Новая наука: Проблемы и перспективы. 2016. № 115 (2). С. 180–183. EDN: XBPUQJ
17. Лисунов Е. А., Миронов Е. Б., Гладцын А. Ю. Процесс образования и развития электрохи- мической коррозии сельскохозяйственной техники // Аграрный вестник Верхневолжья. 2015. № 4 (12). С. 49–52. URL: https://ivgsha.ru/vestnik/vestnik4_2015.pdf (дата обращения: 22.03.2023).