Оптические фотолюминесцентные свойства семян растений при заражении микопатогенами

Ключевые слова: семена, микопатогены, оптические спектры, фотолюминесценция, альтернариоз, фузариоз, Fusarium graminearum, Alternaria alternata

Аннотация

Введение. Использование оптического мониторинга качества зерна позволит значительно снизить потери урожая зерновых, вызванные заражением микопатогенами.
Цель исследования. Изучение зависимости спектральных характеристик, параметров возбуждения и люминесценции семян зерновых при заражении микопатогенами с целью определения информативных спектральных диапазонов и последующей разработки методики контроля зараженности.
Материалы и методы. Для исследования были использованы инокулированные семена пшеницы и ячменя ряда Fusarium graminearum и Alternaria alternata. Спектры возбуждения и регистрации люминесценции измерялись с помощью дифракционного спектрофлуориметра СМ 2203 в диапазоне 230–600 нм. Интегральные и статистические параметры спектров вычислялись в программе Microcal Origin.
Результаты исследования. Удалось выяснить, что при заражении микопатогенами уменьшается спектральная поглощательная способность семян. Для пшеницы интегральные параметры поглощения существенно снижаются при заражении альтернарией. В случае с ячменем, наоборот, большее снижение происходит при заражении фузариозом. В области 230–310 нм у зараженных семян появляются новые максимумы возбуждения. При возбуждении излучением с длиной волны λ = 284 нм спектральные и интегральные характеристики и параметры зараженных семян превышают аналогичные для незараженных. При возбуждении излучением 424 нм и 485 нм количество здоровых семян пшеницы и ячменя превышает количество зараженных.
Обсуждение и заключение. Изменения в спектрах возбуждения и фотолюминесценции могут быть объяснены замещением полисахаридов и белков при поглощении и модификации микокультур. Для объективного контроля заражения семян микопатогенами целесообразно использовать диапазон фотолюминесценции 290–310 нм при возбуждении излучением около 284 нм. Для различения заражения фузариозом и альтернариозом следует использовать контроль фотолюминесценции в диапазоне 380–410 нм.

Биографии авторов

Михаил Владимирович Беляков

доктор технических наук, доцент, главный научный сотрудник лаборатории инновационных технологий и технических средств кормления в животноводстве Федерального научного агроинженерного центра ВИМ (109428, Российская Федерация, г. Москва, 1-й Институтский проезд, д. 5), ORCID: https://orcid.org/0000-0002-4371-8042, Researcher ID: ABB-2684-2020bmw20100@mail.ru

Максим Николаевич Московский, Федеральный научный агроинженерный центр ВИМ

доктор технических наук, профессор Российской академии наук, главный научный сотрудник лаборатории технологий и машин для послеуборочной обработки зерна и семян Федерального научного агроинженерного центра ВИМ (109428, Российская Федерация, г. Москва, 1-й Институтский проезд, д. 5), ORCID: https://orcid.org/0000-0001-5727-8706, Researcher ID: L-5153-2017maxmoskovsky74@yandex.ru

Игорь Юрьевич Ефременков, Федеральный научный агроинженерный центр ВИМ

специалист лаборатории инновационных технологий и технических средств кормления в животноводстве Федерального научного агроинженерного центра ВИМ (109428, Российская Федерация, г. Москва, 1-й Институтский проезд, д. 5), ORCID: https://orcid.org/0000-0003-2302-9773, Researcher ID: AGR-5540-2022matiusharius@mail.ru

Василий Сергеевич Новиков, Федеральный научный агроинженерный центр ВИМ

кандидат физико-математических наук, научный сотрудник лаборатории технологий и машин для послеуборочной обработки зерна и семян Федерального научного агроинженерного центра ВИМ (109428, Российская Федерация, г. Москва, 1-й Институтский проезд, д. 5), ORCID: https://orcid.org/0000-0002-3304-1568, Researcher ID: H-8443-2018vasiliy1992@gmail.com

Сергей Михайлович Кузнецов, Федеральный научный агроинженерный центр ВИМ

кандидат физико-математических наук, научный сотрудник лаборатории технологий и машин для послеуборочной обработки зерна и семян Федерального научного агроинженерного центра ВИМ (109428, Российская Федерация, г. Москва, 1-й Институтский проезд, д. 5), ORCID: https://orcid.org/0000-0002-8378-7085, Researcher ID: H-9433-2018kuznetsov.sm.93@gmail.com

Андрей Александрович Бойко, Донской государственный технический университет

кандидат технических наук, доцент кафедры технической эксплуатации летательных аппаратов и наземного оборудования Донского государственного технического университета (344000, Российская Федерация, г. Ростов-на-Дону, пл. Гагарина, д. 1), ORCID: https://orcid.org/0000-0003-0890-9617, Researcher ID: ABD-3703-2020andreyboi@yandex.ru

Станислав Михайлович Михайличенко, Российский государственный аграрный университет – МСХА имени К. А. Тимирязева

доцент кафедры сельскохозяйственных машин Российского государственного аграрного университета – МСХА имени К. А. Тимирязева (127434, Российская Федерация, г. Москва, ул. Тимирязевская, д. 49), ORCID: https://orcid.org/0000-0002-2305-2909, Researcher ID: IQW-4878-2023S.M.Mikhailichenko@yandex.ru

Литература

Lobachevskiy Ya.P., Dorokhov A.S. Digital Technologies and Robotic Devices in the Agriculture. Agricultural Machinery and Technologies. 2021;15(4):6–10. (In Russ., abstract in Eng.) https://doi.org/10.22314/2073-7599-2021-15-4-6-10

Zudyte B., Luksiene Z. Visible Light-Activated ZnO Nanoparticles for Microbial Control of Wheat Crop. Journal of Photochemistry and Photobiology B: Biology. 2021;219:112206. https://doi.org/10.1016/j.jphotobiol.2021.112206

Hogg A.C., Johnston R.H., Dyer A.T. Applying Real-Time Quantitative PCR to Fusarium Crown Rot of Wheat. Plant Disease. 2007;91(8):1021–1028. https://doi.org/10.1094/PDIS-91-8-1021

Brown N.A., Evans J., Mead A., Hammond-Kosack K.E. A Spatial Temporal Analysis of the Fusarium Graminearum Transcriptome during Symptomless and Symptomatic Wheat Infection. Molecular Plant Pathology. 2017;18(9):1295–1312. https://doi.org/10.1111/mpp.12564

Bollina V., Kumaraswamy G.K., Kushalappa A.C., Choo T.M., Dion Y., Rioux S., et al. Mass Spectrometry-Based Metabolomics Application to Identify Quantitative Resistance-Related Metabolites in Barley Against Fusarium Head Blight. Molecular Plant Pathology. 2010;11(6):769–782. https://doi.org/10.1111/j.1364-3703.2010.00643.x

Knight N.L., Sutherland M.W. Histopathological Assessment of Wheat Seedling Tissues Infected by Fusarium Pseudograminearum. Plant Pathology. 2013;62(3):679–687. https://doi.org/10.1111/j.1365-3059.2012.02663.x

Wójtowicz A., Piekarczyk J., Czernecki B., Ratajkiewicz H. A Random Forest Model for the Classification of Wheat and Rye Leaf Rust Symptoms Based on Pure Spectra at Leaf Scale. Journal of Photochemistry and Photobiology B: Biology. 2021;223:112278. https://doi.org/10.1016/j.jphotobiol.2021.112278

Cuba N.I., Torres R., San Román E. Lagorio M.G. Influence of Surface Structure, Pigmentation and Particulate Matter on Plant Reflectance and Fluorescence. Photochemistry and Photobiology. 2021;97(1):110–121. https://doi.org/10.1111/php.13273

Huang W.J., Lu J.J., Ye H.C., Kong W.P., Mortimer A.H., Shi Y. Quantitative Identification of Crop Disease and Nitrogen-Water Stress in Winter Wheat Using Continuous Wavelet Analysis. International Journal of Agricultural and Biological Engineering. 2018;11(2):145–152. https://doi.org/10.25165/j.ijabe.20181102.3467

Williams P.J., Geladi P., Britz T.J., Manley M. Investigation of Fungal Development in Maize Kernels Using Nir Hyperspectral Imaging and Multivariate Data Analysis. Journal of Cereal Science. 2012;55(3):272–278. https://doi.org/10.1016/j.jcs.2011.12.003

Yao H., Hruska Z., Kincaid R., Brown R.L., Bhatnagar D., Cleveland T.E. Detecting Maize Inoculated With Toxigenic and Atoxigenic Fungal Strains with Fluorescence Hyperspectral Imagery. Biosystems Engineering. 2013;115(2):125–135. https://doi.org/10.1016/j.biosystemseng.2013.03.006

Lu Y., Saeys W., Kim M., Peng Y., Lu R. Hyperspectral Imaging Technology for Quality and Safety Evaluation of Horticultural Products: a Review and Celebration of the Past 20-Year Progress. Postharvest Biology and Technology. 2020;170:111318. https://doi.org/10.1016/j.postharvbio.2020.111318

Shurygin B., Chivkunova O., Solovchenko O., Solovchenko A., Dorokhov A., Smirnov I., et al. Comparison of the Non-Invasive Monitoring of Fresh-Cut Lettuce Condition with Imaging Reflectance Hyperspectrometer and Imaging PAM-Fluorimeter. Photonics. 2021;8(10):425. https://doi.org/10.3390/photonics8100425

Sun Z., Hu D., Wang Z., Xie L., Ying Y. Spatial-Frequency Domain Imaging: An Emerging Depth-Varying and Wide-Field Technique for Optical Property Measurement of Biological Tissues. Photonics. 2021;8(8):162. https://doi.org/10.3390/photonics8050162

Platonova G., Štys D., Souček P., Lonhus K., Valenta J., Rychtáriková R. Spectroscopic Approach to Correction and Visualisation of Bright-Field Light Transmission Microscopy Biological Data. Photonics. 2021;8(5):333. https://doi.org/10.3390/photonics8080333

Toro P.M., Jara D.H., Klahn A.H., Villaman D., Fuentealba M., Vega A., et al. Spectroscopic Study of the E/Z Photoisomerization of a New Cyrhetrenyl Acylhydrazone: A Potential Photoswitch and Photosensitizer. Photochemistry and Photobiology. 2021;97(1):61–70. https://doi.org/10.1111/php.13309

Camuri I.J., da Costa A.B., Ito A.S., Pazin W.M. pH and Charge Effects Behind the Interaction of Artepillin C, the Major Component of Green Propolis, with Amphiphilic Aggregates: Optical Absorption and Fluorescence Spectroscopy Studies. Photochemistry and Photobiology. 2019;95(6):1345–1351. https://doi.org/10.1111/php.13128

Rumfeldt J.A., Takala H., Liukkonen A., Ihalainen J.A. UV-Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes. Photochemistry and Photobiology. 2019;95:969–979. https://doi.org/10.1111/php.13095

Gsponer N.S., Rodríguez M.C., Palacios R.E., Chesta C.A. On the Simultaneous Identification and Quantification of Microalgae Populations Based on Fluorometric Techniques. Photochemistry and Photobiology. 2018;94:875–880. https://doi.org/10.1111/php.12936

Kowalski A., Agati G., Grzegorzewska M., Kosson R., Kusznierewicz B., Chmiel T., et al. Valorization of Waste Cabbage Leaves by Postharvest Photochemical Treatments Monitored with a Non-destructive Fluorescence-based Sensor. Journal of Photochemistry and Photobiology B: Biology. 2021;222:112263. https://doi.org/10.1016/j.jphotobiol.2021.112263

Cherney J.H., Digman M.F., Cherney D.J. Handheld NIRS for Forage Evaluation. Computers and Electronics in Agriculture. 2021;190:106469. https://doi.org/10.1016/j.compag.2021.106469

Acosta J., Castillo M.S., Hodge G.R. Comparison of Benchtop and Handheld Near-Infrared Spectroscopy Devices to Determine Forage Nutritive Value. Crop Science. 2020;60(6):3410–3422. https://doi.org/10.1002/csc2.20264

Berzaghi P., Cherney J.H., Casler M.D. Prediction Performance of Portable Near Infrared Reflectance Instruments Using Preprocessed Dried, Ground Forage Samples. Computers and Electronics in Agriculture. 2021;182:106013. https://doi.org/10.1016/j.compag.2021.106013

Dorokhov A., Moskovskiy M., Belyakov M., Lavrov A., Khamuev V. Detection of Fusarium Infected Seeds of Cereal Plants by the Fluorescence Method. PLOS ONE. 2022;17(7). https://doi.org/10.1371/journal.pone.0267912

Belyakov M., Sokolova E., Listratenkova V., Ruzanova N., Kashko L. Photoluminescent Control Ripeness of the Seeds of Plants. E3S Web of Conferences. 2021;273:01003. https://doi.org/10.1051/e3sconf/202127301003

Опубликован
2024-08-16
Раздел
Приборы и методы экспериментальной физики