Идентификация дефектов изделий из сотовых композиционных материалов методом инфракрасной сканирующей термографии
Аннотация
Введение. В последнее время получили широкое распространение сендвич-структурированные композиционные материалы на основе сотовых заполнителей в тонкой, но прочной оболочке. К сожалению, для таких материалов характерно образование производственных и эксплуатационных дефектов типа «непроклей» и «отслоение», заключающихся в нарушении связей между обшивкой и сотовым заполнителем, приводящих к ухудшению механических, акустических и тепловых свойств материала.
Цель исследования. Целью статьи является разработка эффективных методов обнаружения дефектов клеевого соединения обшивки с сотовым наполнителем сендвича.
Материалы и методы. В работе описан способ обнаружения дефектов при помощи сканирующей термографии с линейным источником тепла, основанный на вычислении и последующем анализе распределения локальных градиентов температурного поля на поверхности изделия.
Результаты исследования. Проведены эксперименты на модельном полимерном образце с заложенным искусственным дефектом, показаны основные источники возникающих шумов и ошибок контроля, способы снижения их влияния, предложен численный способ оценки точности метода определения дефекта.
Обсуждение и заключение. Проведенные на контрольном образце испытания показали, что доля ошибок при определении дефекта не превышает 12 %.
Литература
Ratcliffe J.G., Czabaj M.W., Jackson W.C. A Model for Simulating the Response of Aluminum Honeycomb Structure to Transverse Loading. 15th US-Japan Conference on Composite Materials Meeting 2012;38–53. Available at: https://ntrs.nasa.gov/api/citations/20120015487/downloads/20120015487.pdf (accessed 06.10.2023).
Heimbs S. Virtual Testing of Sandwich Core Structures Using Dynamic Finite Element Simulations. Computational Materials Science. 2009;45(2):205–216. https://doi.org/10.1016/j.commatsci.2008.09.017
Giglio M., Manes A., Gilioli A. Investigations on Sandwich Core Properties Through an Experimental-Numerical Approach. Composites Part B: Engineering. 2012;43(2):361–374. https://doi.org/10.1016/j.compositesb.2011.08.016
Yang X., Sun Y., Yang J., Pan Q. Out-of-Plane Crashworthiness Analysis of Bio-Inspired Aluminum Honeycomb Patterned with Horseshoe Mesostructure. Thin-Walled Structures. 2018;125:1–11. https://doi.org/10.1016/j.tws.2018.01.014
Liu S., Zhang Y., Liu P. New Analytical Model for Heat Transfer Efficiency of Metallic Honeycomb Structures. International Journal of Heat and Mass Transfer. 2008;51(25–26):6254–6258. https://doi.org/10.1016/j.ijheatmasstransfer.2007.07.055
Hong S.-T., Pan J., Tyan T., Prasad P. Quasi-Static Crush Behavior of Aluminum Honeycomb Specimens under Non-Proportional Compression-Dominant Combined Loads. International Journal of Plasticity. 2006;22(6):1062–1088. https://doi.org/10.1016/j.ijplas.2005.07.003
Dharmasena K.P., Wadley H.N.G., Xue Z., Hutchinson J.W. Mechanical Response of Metallic Honeycomb Sandwich Panel Structures to High-Intensity Dynamic Loading. International Journal of Impact Engineering. 2008;35(9):1063–1074. https://doi.org/10.1016/j.ijimpeng.2007.06.008
Côté F., Deshpande V.S., Fleck N.A., Evans A.G. The Out-of-Plane Compressive Behavior of Metallic Honeycombs. Materials Science and Engineering: A. 2004;380(1–2):272–280. https://doi.org/10.1016/j.msea.2004.03.051
Rodriguez-Ramirez J.de D., Castanie B., Bouvet C. Experimental and Numerical Analysis of the Shear Nonlinear Behaviour of Nomex Honeycomb Core: Application to Insert Sizing. Composite Structures. 2018;193:121–139. https://doi.org/10.1016/j.compstruct.2018.03.076
Kim G., Sterkenburg R., Tsutsui W. Investigating the Effects of Fluid Intrusion on Nomex® Honeycomb Sandwich Structures with Carbon Fiber Facesheets. Composite Structures. 2018;206:535–549. https://doi.org/10.1016/j.compstruct.2018.08.054
Chen Z., Yan N. Investigation of Elastic Moduli of Kraft Paper Honeycomb Core Sandwich Panels. Composites Part B: Engineering. 2012;43(5):2107–2114. https://doi.org/10.1016/j.compositesb.2012.03.008
Abd Kadir N., Aminanda Y., Ibrahim M.S., Mokhtar H. Experimental Study of Low-Velocity Impact on Foam-Filled Kraft Paper Honeycomb Structure. IOP Conference Series: Materials Science and Engineering. 2018;290:012082. https://doi.org/10.1088/1757-899X/290/1/012082
Toribio M.G., Spearing S.M. Compressive Response of Notched Glass-Fiber Epoxy/Honeycomb Sandwich Panels. Composites Part A: Applied Science and Manufacturing. 2001;32(6):859–870. https://doi.org/10.1016/S1359-835X(00)00150-0
Shahdin A., Mezeix L., Bouvet C., Morlier J., Gourinat Y. Fabrication and Mechanical Testing of Glass Fiber Entangled Sandwich Beams: A Comparison with Honeycomb and Foam Sandwich Beams. Composite Structures. 2009;90(4):404–412. https://doi.org/10.1016/j.compstruct.2009.04.003
Bělský P., Kadlec M. Capability of Non-Destructive Techniques in Evaluating Damage to Composite Sandwich Structures. International Journal of Structural Integrity. 2019;10(3):356–370. https://doi.org/10.1108/IJSI-10-2018-0067
Usamentiaga R., Venegas P., Guerediaga J., Vega L., Molleda J., Bulnes F.G. Infrared Thermography for Temperature Measurement and Non-Destructive Testing. Sensors. 2014;14(7):12305–12348. https://doi.org/10.3390/s140712305
Golovin Yu.I., Golovin D.Yu., Tyurin A.I. Dynamic Thermography for Technical Diagnostics of Materials and Structures. Russian Metallurgy (Metally). 2021;2021(4):512–527. https://doi.org/10.1134/S0036029521040091
Jiao D., Liu Z., Shi W., Xie H. Temperature Fringe Method with Phase-Shift for the 3D Shape Measurement. Optics and Lasers in Engineering. 2019;112:93–102. https://doi.org/10.1016/j.optlaseng.2018.09.010
Liu Z., Jiao D., Shi W., Xie H. Linear Laser Fast Scanning Thermography NDT for Artificial Disbond Defects in Thermal Barrier Coatings. Optics Express. 2017;25(25):31789–31800. https://doi.org/10.1364/OE.25.031789
Jiao D., Shi W., Liu Z., Xie H. Laser Multi-Mode Scanning Thermography Method for Fast Inspection of Micro-Cracks in TBCs Surface. Journal of Nondestructive Evaluation. 2018;37(2):30. https://doi.org/10.1007/s10921-018-0485-1
Kaledin V.O., Vyachkina E.A., Vyachkin E.S., Budadin O.N., Kozel’skaya S.O. Applying Ultrasonic Thermotomography and Electric-Loading Thermography for Thermal Characterization of Small-Sized Defects in Complex-Shaped Spatial Composite Structures. Russian Journal of Nondestructive Testing. 2020;56(1):58–69. https://doi.org/10.1134/S1061830920010052
Budadin O., Razin A., Aniskovich V., Kozelskaya S., Abramova E. New Approaches to Diagnostics of Quality of Structures from Polymeric Composite Materials under Force and Shock Impact Using the Analysis of Temperature Fields. Journal of Physics: Conference Series. 2020;1636:012022. https://doi.org/10.1088/1742-6596/1636/1/012022
Rellinger T., Underhill P.R., Krause T.W., Wowk D. Combining Eddy Current, Thermography and Laser Scanning to Characterize Low-Velocity Impact Damage in Aerospace Composite Sandwich Panels. NDT and E International. 2021;120:102421. https://doi.org/10.1016/j.ndteint.2021.102421
Khodayar F., Lopez F., Ibarra-Castanedo C., Maldague X. Parameter Optimization of Robotize Line Scan Thermography for CFRP Composite Inspection. Journal of Nondestructive Evaluation. 2018;37(1):5. https://doi.org/10.1007/s10921-017-0459-8